Counting Quasiplatonic Cyclic Group Actions of Order n

Charles Camacho

Oregon State University, Oregon, US BIRS, Banff, Canada

September 26, 2017

イロト 不同下 イヨト イヨト

- 32

1/20

How many compact Riemann surfaces X admit a conformal cyclic group action of order n, if we assume $X \cong \mathbb{H}/\Gamma$ with $\Gamma \lhd \Delta(n_1, n_2, n_3)$ and $\Delta(n_1, n_2, n_3)/\Gamma \cong C_n$?

How many compact Riemann surfaces X admit a conformal cyclic group action of order n, if we assume $X \cong \mathbb{H}/\Gamma$ with $\Gamma \lhd \Delta(n_1, n_2, n_3)$ and $\Delta(n_1, n_2, n_3)/\Gamma \cong C_n$?

These surfaces are called quasiplatonic cyclic *n*-gonal surfaces.

We will apply results of Benim and Wootton to count all **topological cyclic group actions of order** *n* **on quasiplatonic surfaces** (this is different from counting *n*-gonal surfaces).

A group G acts topologically on a surface X of genus $g \ge 2$ if there is a monomorphism $\epsilon : G \to \text{Homeo}^+(X)$.

Two actions ϵ_1 and ϵ_2 are **equivalent** if $\epsilon_1(G)$ and $\epsilon_2(G)$ are conjugate in Homeo⁺(X).

A regular dessin (D, X) will be called a **regular cyclic dessin of order** *n* if

 $\operatorname{Aut}(D) \cong C_n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5/20

A regular dessin (D, X) will be called a **regular cyclic dessin of order** *n* if

 $\operatorname{Aut}(D) \cong C_n$.

The number $R(C_n)$ of regular cyclic dessins of order $n \ge 7$ having genus at least two is given by

$$R(C_n) = n \prod_{p|n} \left(1 + \frac{1}{p}\right) - 3.$$

イロン イヨン イヨン イヨン 三日一

5/20

(G. Jones, 2014)

There are two quasiplatonic cyclic 7-gonal surfaces, both of genus three:

There are two quasiplatonic cyclic 7-gonal surfaces, both of genus three:

Example

There are **five** regular cyclic dessins on quasiplatonic cyclic 7-gonal surfaces.

1 Is there a closed form for QC(n)?

- **1** Is there a closed form for QC(n)?
- **2** What is the relationship between QC(n) and $R(C_n)$?

- **1** Is there a closed form for QC(n)?
- **2** What is the relationship between QC(n) and $R(C_n)$?
- Solution Can QC(n) be determined combinatorially, by using dessins for instance?

Method - Harvey's Theorem for the Quasiplatonic Case

<ロト < 部 > < 言 > < 言 > 言 の < で 9/20

Theorem (Harvey, 1966)

Let $n = lcm(n_1, n_2, n_3)$. Then the cyclic group of order n acts on X of genus g with signature (n_1, n_2, n_3) if and only if

- If or n even, exactly two of n₁, n₂, n₃ must be divisible by the maximum power of two dividing n;
- the Riemann-Hurwitz formula holds:

$$g = 1 + \frac{n}{2} \left(1 - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3} \right).$$

9 / 20

Method - Signatures

<ロト < 部 > < 言 > < 言 > 言 の < で 10 / 20 Fix an equivalence class of (n_1, n_2, n_3) -generating vectors for C_n . This determines a triangle group $\Delta(n_1, n_2, n_3)$ and a torsion-free Fuchsian group Γ with $\Delta(n_1, n_2, n_3)/\Gamma \cong C_n$.

Fix an equivalence class of (n_1, n_2, n_3) -generating vectors for C_n . This determines a triangle group $\Delta(n_1, n_2, n_3)$ and a torsion-free Fuchsian group Γ with $\Delta(n_1, n_2, n_3)/\Gamma \cong C_n$.

イロト 不得下 イヨト イヨト 二日

There are three cases for possible signatures (n_1, n_2, n_3) :

- all n_i are distinct;
- exactly two of n_i are equal;
- all n_i are equal.

Method - Benim/Wootton Formulas

<□ > <□ > < 壹 > < 壹 > < 壹 > < Ξ > < Ξ > ○ Q (~ 11/20

Method - Benim/Wootton Formulas

Let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$ be the prime factorization of n.

Signature	T = number of distinct topological actions
(n_1, n_2, n_3)	$T = \phi(\gcd(n_1, n_2, n_3)) \left(\prod_{i=1}^{w} \frac{p_i - 2}{p_i - 1}\right)$
(n_1, n, n)	$T = \frac{1}{2} \left(\tau_1(n, n_1) + \phi(n) \left(\prod_{i=1}^w \frac{p_i - 2}{p_i - 1} \right) \right)$
(<i>n</i> , <i>n</i> , <i>n</i>)	$\mathcal{T} = rac{1}{6} \left(3 + 2 au_2(n) + \phi(n) \left(\prod_{i=1}^r rac{p_i - 2}{p_i - 1} \right) ight)$

Method - Benim/Wootton Formulas

Let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$ be the prime factorization of n.

Signature	T = number of distinct topological actions
(n_1, n_2, n_3)	$T = \phi(\gcd(n_1, n_2, n_3)) \left(\prod_{i=1}^{w} \frac{p_i - 2}{p_i - 1}\right)$
(n_1, n, n)	$T=rac{1}{2}\left(au_1(n,n_1)+\phi(n)\left(\prod_{i=1}^wrac{p_i-2}{p_i-1} ight) ight)$
(n, n, n)	$T = \frac{1}{6} \left(3 + 2\tau_2(n) + \phi(n) \left(\prod_{i=1}^r \frac{p_i - 2}{p_i - 1} \right) \right)$

Here,

- $\tau_1(n, n_1) =$ number of noncongruent, nonzero solutions to $x^2 + 2x \equiv 0 \mod n$ where $gcd(x, n) = n/n_1$;
- $\tau_2(n) =$ number of noncongruent solutions to $x^2 + x + 1 \equiv 0 \mod n$;
- w ≥ 0 is an integer representing the number of primes (including multiplicity) shared in common.

Method - QC(n)

• find all admissible signatures for a given n;

- Ind all admissible signatures for a given n;
- for each signature, use one of three different Benim/Wootton formulas giving the number of nonequivalent quasiplatonic cyclic actions on surfaces of that signature;

- Ind all admissible signatures for a given n;
- for each signature, use one of three different Benim/Wootton formulas giving the number of nonequivalent quasiplatonic cyclic actions on surfaces of that signature;
- add up all values given by the formulas from all possible signatures for n. This number will be QC(n).

Example

Let n = 20.

Example

Let n = 20.

Signature	Т
(4, 5, 20)	T = 1
(4, 10, 20)	T = 1
(2, 20, 20)	T = 1
(5, 20, 20)	T = 2
(10, 20, 20)	<i>T</i> = 2

Let n = 20.

Signature	Т
(4, 5, 20)	T = 1
(4, 10, 20)	T = 1
(2, 20, 20)	T = 1
(5, 20, 20)	T = 2
(10, 20, 20)	T = 2

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

13 / 20

Then QC(20) = 1 + 1 + 1 + 2 + 2 = 7.

For $n = p \ge 5$ a prime, there is only one admissible signature: (p, p, p).

For $n = p \ge 5$ a prime, there is only one admissible signature: (p, p, p). Then

$$QC(p) = \frac{1}{6} \left(3 + 2\tau_2(p) + \phi(p) \left(\frac{p-2}{p-1} \right) \right)$$
$$= \begin{cases} \frac{1}{6}(p+1) & p \equiv 5 \mod 6\\ \frac{1}{6}(p+1) + \frac{2}{3} & p \equiv 1 \mod 6 \end{cases}$$

٠

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

14 / 20

QC(n) is known for some values of n (e.q., n is a prime power). The general case is still being investigated.

QC(n) is known for some values of n (e.q., n is a prime power). The general case is still being investigated.

Let $QC_R(n) := 6 \cdot QC(n) - R(C_n)$. Computations with Sage suggest that, for certain families of positive integers, $QC_R(n)$ is a constant.

Data - Table of Values

n	QC(n)	$R(C_n)$	$QC_R(n)$
7	2	5	7
8	3	9	9
9	2	9	3
10	3	15	3
11	2	9	3
12	5	21	9
13	3	11	7
14	4	21	3
15	5	21	9
16	5	21	9
17	3	15	3
18	6	33	3
19	4	17	7
20	7	33	9

n	QC(n)	$R(C_n)$	$QC_R(n)$
21	7	29	13
22	6	33	3
23	4	21	3
24	11	45	21
25	5	27	3
26	7	39	3
27	6	33	3
28	9	45	9
29	5	27	3
30	13	69	9

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Data - Graph of QC(n)

17 / 20

Data - Graph of $QC_R(n)$

18 / 20

Future Directions

 Generalize methods to any quasiplatonic group; i.e., find all topological actions of G = Δ/Γ on surfaces X ≅ ℍ/Γ, for Δ a triangle group and Γ a surface group.

- Generalize methods to any quasiplatonic group; i.e., find all topological actions of G = Δ/Γ on surfaces X ≅ ℍ/Γ, for Δ a triangle group and Γ a surface group.
- Compute QC(n) using combinatorial information from the regular cyclic dessins.

- Generalize methods to any quasiplatonic group; i.e., find all topological actions of G = Δ/Γ on surfaces X ≅ ℍ/Γ, for Δ a triangle group and Γ a surface group.
- Compute QC(n) using combinatorial information from the regular cyclic dessins.
- Relate topological actions to conformal actions.

References

- Benim, R., Wootton, A. Enumerating Quasiplatonic Cyclic Group Actions. Journal of Mathematics, 43(5), 2013.
- Girondo, E., González-Diez, G. Introduction to Compact Riemann Surfaces and Dessins d'Enfants. Cambridge: Cambridge UP, 2012. Print.
- Harvey, W. J. Cyclic groups of automorphisms of a compact Riemann surface. The Quarterly Journal of Mathematics, 17(1), 86-97. 1966.
- Jones, G. A. Regular dessins with a given automorphism group. Contemporary Mathematics, 629, 245-260. 2014.
- Jones, G. A., Wolfart, J. Dessins d'Enfants on Riemann Surfaces. Switzerland: Springer International Publishing, 2016. Print.

Questions? Thank you!