Counting Quasiplatonic Cyclic Group Actions of Order n

Charles Camacho
Oregon State University, Oregon, US BIRS, Banff, Canada

September 26, 2017

Main Question

How many compact Riemann surfaces X admit a conformal cyclic group action of order n, if we assume $X \cong \mathbb{H} / \Gamma$ with $\Gamma \triangleleft \Delta\left(n_{1}, n_{2}, n_{3}\right)$ and $\Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma \cong C_{n}$?

Main Question

How many compact Riemann surfaces X admit a conformal cyclic group action of order n, if we assume $X \cong \mathbb{H} / \Gamma$ with $\Gamma \triangleleft \Delta\left(n_{1}, n_{2}, n_{3}\right)$ and $\Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma \cong C_{n}$?
These surfaces are called quasiplatonic cyclic n-gonal surfaces.

Related Question

We will apply results of Benim and Wootton to count all topological cyclic group actions of order n on quasiplatonic surfaces (this is different from counting n-gonal surfaces).

Group Acting on a Surface

A group G acts topologically on a surface X of genus $g \geq 2$ if there is a monomorphism $\epsilon: G \rightarrow$ Homeo $^{+}(X)$.

Two actions ϵ_{1} and ϵ_{2} are equivalent if $\epsilon_{1}(G)$ and $\epsilon_{2}(G)$ are conjugate in Homeo ${ }^{+}(X)$.

Regular Cyclic Dessins

A regular dessin (D, X) will be called a regular cyclic dessin of order n if

$$
\operatorname{Aut}(D) \cong C_{n} .
$$

Regular Cyclic Dessins

A regular dessin (D, X) will be called a regular cyclic dessin of order n if

$$
\operatorname{Aut}(D) \cong C_{n}
$$

The number $R\left(C_{n}\right)$ of regular cyclic dessins of order $n \geq 7$ having genus at least two is given by

$$
R\left(C_{n}\right)=n \prod_{p \mid n}\left(1+\frac{1}{p}\right)-3
$$

(G. Jones, 2014)

Example

There are two quasiplatonic cyclic 7-gonal surfaces, both of genus three:

Example

There are two quasiplatonic cyclic 7-gonal surfaces, both of genus three:
(1) $y^{2}=x^{8}-x$,
(2) $y^{7}=x(x-1)^{2}$ (Klein's Quartic).

Example

There are five regular cyclic dessins on quasiplatonic cyclic 7-gonal surfaces.

Main Questions

Let $Q C(n)$ denote the number of distinct topological actions of C_{n} on quasiplatonic surfaces.

Main Questions

Let $Q C(n)$ denote the number of distinct topological actions of C_{n} on quasiplatonic surfaces.
(1) Is there a closed form for $Q C(n)$?

Main Questions

Let $Q C(n)$ denote the number of distinct topological actions of C_{n} on quasiplatonic surfaces.
(1) Is there a closed form for $Q C(n)$?
(2) What is the relationship between $Q C(n)$ and $R\left(C_{n}\right)$?

Main Questions

Let $Q C(n)$ denote the number of distinct topological actions of C_{n} on quasiplatonic surfaces.
(1) Is there a closed form for $Q C(n)$?
(2) What is the relationship between $Q C(n)$ and $R\left(C_{n}\right)$?
(3) Can $Q C(n)$ be determined combinatorially, by using dessins for instance?

Method - Harvey's Theorem for the Quasiplatonic Case

Method - Harvey's Theorem for the Quasiplatonic Case

Theorem (Harvey, 1966)

Let $n=\operatorname{lcm}\left(n_{1}, n_{2}, n_{3}\right)$. Then the cyclic group of order n acts on X of genus g with signature $\left(n_{1}, n_{2}, n_{3}\right)$ if and only if
(1) $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)=\operatorname{lcm}\left(n_{1}, n_{3}\right)=\operatorname{lcm}\left(n_{2}, n_{3}\right)$;
(2) for n even, exactly two of n_{1}, n_{2}, n_{3} must be divisible by the maximum power of two dividing n;
(3) the Riemann-Hurwitz formula holds:

$$
g=1+\frac{n}{2}\left(1-\frac{1}{n_{1}}-\frac{1}{n_{2}}-\frac{1}{n_{3}}\right) .
$$

Method - Signatures

Method - Signatures

Fix an equivalence class of $\left(n_{1}, n_{2}, n_{3}\right)$-generating vectors for C_{n}. This determines a triangle group $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ and a torsion-free Fuchsian group Γ with $\Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma \cong C_{n}$.

Method - Signatures

Fix an equivalence class of $\left(n_{1}, n_{2}, n_{3}\right)$-generating vectors for C_{n}. This determines a triangle group $\Delta\left(n_{1}, n_{2}, n_{3}\right)$ and a torsion-free Fuchsian group Γ with $\Delta\left(n_{1}, n_{2}, n_{3}\right) / \Gamma \cong C_{n}$.
There are three cases for possible signatures $\left(n_{1}, n_{2}, n_{3}\right)$:

- all n_{i} are distinct;
- exactly two of n_{i} are equal;
- all n_{i} are equal.

Method - Benim/Wootton Formulas

Method - Benim/Wootton Formulas

Let $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ be the prime factorization of n.

Signature	$T=$ number of distinct topological actions
$\left(n_{1}, n_{2}, n_{3}\right)$	$T=\phi\left(\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)\right)\left(\prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1}\right)$
$\left(n_{1}, n, n\right)$	$T=\frac{1}{2}\left(\tau_{1}\left(n, n_{1}\right)+\phi(n)\left(\prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1}\right)\right)$
(n, n, n)	$T=\frac{1}{6}\left(3+2 \tau_{2}(n)+\phi(n)\left(\prod_{i=1}^{r} \frac{p_{i}-2}{p_{i}-1}\right)\right)$

Method - Benim/Wootton Formulas

Let $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ be the prime factorization of n.

Signature	$T=$ number of distinct topological actions
$\left(n_{1}, n_{2}, n_{3}\right)$	$T=\phi\left(\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)\right)\left(\prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1}\right)$
$\left(n_{1}, n, n\right)$	$T=\frac{1}{2}\left(\tau_{1}\left(n, n_{1}\right)+\phi(n)\left(\prod_{i=1}^{w} \frac{p_{i}-2}{p_{i}-1}\right)\right)$
(n, n, n)	$T=\frac{1}{6}\left(3+2 \tau_{2}(n)+\phi(n)\left(\prod_{i=1}^{r} \frac{p_{i}-2}{p_{i}-1}\right)\right)$

Here,

- $\tau_{1}\left(n, n_{1}\right)=$ number of noncongruent, nonzero solutions to $x^{2}+2 x \equiv 0 \bmod n$ where $\operatorname{gcd}(x, n)=n / n_{1}$;
- $\tau_{2}(n)=$ number of noncongruent solutions to $x^{2}+x+1 \equiv 0 \bmod n$;
- $w \geq 0$ is an integer representing the number of primes (including multiplicity) shared in common.

Method - $Q C(n)$

Method - $Q C(n)$

Compute $Q C(n)$ via the following procedure:

Method - $Q C(n)$

Compute $Q C(n)$ via the following procedure:
(1) find all admissible signatures for a given n;

Method - $Q C(n)$

Compute $Q C(n)$ via the following procedure:
(1) find all admissible signatures for a given n;
(2) for each signature, use one of three different Benim/Wootton formulas giving the number of nonequivalent quasiplatonic cyclic actions on surfaces of that signature;

Method - QC(n)

Compute $Q C(n)$ via the following procedure:
(1) find all admissible signatures for a given n;
(2) for each signature, use one of three different Benim/Wootton formulas giving the number of nonequivalent quasiplatonic cyclic actions on surfaces of that signature;
(3) add up all values given by the formulas from all possible signatures for n. This number will be $Q C(n)$.

Example

Let $n=20$.

Example

Let $n=20$.

Signature	T
$(4,5,20)$	$T=1$
$(4,10,20)$	$T=1$
$(2,20,20)$	$T=1$
$(5,20,20)$	$T=2$
$(10,20,20)$	$T=2$

Example

Let $n=20$.

Signature	T
$(4,5,20)$	$T=1$
$(4,10,20)$	$T=1$
$(2,20,20)$	$T=1$
$(5,20,20)$	$T=2$
$(10,20,20)$	$T=2$

Then $Q C(20)=1+1+1+2+2=7$.

Example

For $n=p \geq 5$ a prime, there is only one admissible signature: (p, p, p).

Example

For $n=p \geq 5$ a prime, there is only one admissible signature: (p, p, p). Then

$$
\begin{aligned}
Q C(p) & =\frac{1}{6}\left(3+2 \tau_{2}(p)+\phi(p)\left(\frac{p-2}{p-1}\right)\right) \\
& = \begin{cases}\frac{1}{6}(p+1) & p \equiv 5 \bmod 6 \\
\frac{1}{6}(p+1)+\frac{2}{3} & p \equiv 1 \bmod 6\end{cases}
\end{aligned}
$$

Current Research

$Q C(n)$ is known for some values of n (e.q., n is a prime power). The general case is still being investigated.

Current Research

$Q C(n)$ is known for some values of n (e.q., n is a prime power). The general case is still being investigated.
Let $Q C_{R}(n):=6 \cdot Q C(n)-R\left(C_{n}\right)$. Computations with Sage suggest that, for certain families of positive integers, $Q C_{R}(n)$ is a constant.

Data - Table of Values

n	$Q C(n)$	$R\left(C_{n}\right)$	$Q C_{R}(n)$
7	2	5	7
8	3	9	9
9	2	9	3
10	3	15	3
11	2	9	3
12	5	21	9
13	3	11	7
14	4	21	3
15	5	21	9
16	5	21	9
17	3	15	3
18	6	33	3
19	4	17	7
20	7	33	9

n	$Q C(n)$	$R\left(C_{n}\right)$	$Q C_{R}(n)$
21	7	29	13
22	6	33	3
23	4	21	3
24	11	45	21
25	5	27	3
26	7	39	3
27	6	33	3
28	9	45	9
29	5	27	3
30	13	69	9

Data - Graph of $Q C(n)$

Data - Graph of $Q C_{R}(n)$

Future Directions

Future Directions

- Generalize methods to any quasiplatonic group; i.e., find all topological actions of $G=\Delta / \Gamma$ on surfaces $X \cong \mathbb{H} / \Gamma$, for Δ a triangle group and Γ a surface group.

Future Directions

- Generalize methods to any quasiplatonic group; i.e., find all topological actions of $G=\Delta / \Gamma$ on surfaces $X \cong \mathbb{H} / \Gamma$, for Δ a triangle group and Γ a surface group.
- Compute $Q C(n)$ using combinatorial information from the regular cyclic dessins.

Future Directions

- Generalize methods to any quasiplatonic group; i.e., find all topological actions of $G=\Delta / \Gamma$ on surfaces $X \cong \mathbb{H} / \Gamma$, for Δ a triangle group and Γ a surface group.
- Compute $Q C(n)$ using combinatorial information from the regular cyclic dessins.
- Relate topological actions to conformal actions.

References

- Benim, R., Wootton, A. Enumerating Quasiplatonic Cyclic Group Actions. Journal of Mathematics, 43(5), 2013.
- Girondo, E., González-Diez, G. Introduction to Compact Riemann Surfaces and Dessins d'Enfants. Cambridge: Cambridge UP, 2012. Print.
- Harvey, W. J. Cyclic groups of automorphisms of a compact Riemann surface. The Quarterly Journal of Mathematics, 17(1), 86-97. 1966.
- Jones, G. A. Regular dessins with a given automorphism group. Contemporary Mathematics, 629, 245-260. 2014.
- Jones, G. A., Wolfart, J. Dessins d'Enfants on Riemann Surfaces. Switzerland: Springer International Publishing, 2016. Print.
Questions? Thank you!

